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Abstract

Change detection is a classic paradigm that has been used for decades to argue that working memory can hold no more
than a fixed number of items (‘‘item-limit models’’). Recent findings force us to consider the alternative view that working
memory is limited by the precision in stimulus encoding, with mean precision decreasing with increasing set size
(‘‘continuous-resource models’’). Most previous studies that used the change detection paradigm have ignored effects of
limited encoding precision by using highly discriminable stimuli and only large changes. We conducted two change
detection experiments (orientation and color) in which change magnitudes were drawn from a wide range, including small
changes. In a rigorous comparison of five models, we found no evidence of an item limit. Instead, human change detection
performance was best explained by a continuous-resource model in which encoding precision is variable across items and
trials even at a given set size. This model accounts for comparison errors in a principled, probabilistic manner. Our findings
sharply challenge the theoretical basis for most neural studies of working memory capacity.
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Introduction

Visual working memory, the ability to buffer visual information

over time intervals of the order of seconds, is a fundamental aspect

of cognition. It is essential for detecting changes [1–3], integrating

information across eye fixations [4–5], and planning goal-directed

reaching movements [6]. Numerous studies have found that visual

working memory is limited, but the precise nature of its limitations

is subject of intense debate [7–14]. The standard view is that visual

working memory cannot hold more than about four items, with

any excess items being discarded [7–9,15–18]. According to an

alternative hypothesis, working memory limitations take the form

of a gradual decrease in the encoding precision of stimuli with

increasing set size [10–11,13,19–23]. In this view, encoding

precision is a continuous quantity, and this hypothesis has

therefore also been referred to as the continuous-resource

hypothesis.

Historically, the leading paradigm for studying visual working

memory has been change detection, a task in which observers

report whether a change occurred between two scenes separated

in time [2–3,24]. Not only humans, but also non-human primates

can perform multiple-item change detection [25–28], and

physiological studies have begun to investigate the neural

mechanisms involved in this task [27]. Findings from change

detection studies have been used widely to argue in favor of the

item-limit hypothesis [2,8,15–18]. The majority of these studies,

however, used stimuli that differed categorically from each other,

such as line drawings of everyday objects or highly distinct and

easily named colors. The logic is that for such stimuli, changes are

large relative to the noise, avoiding the problem of ‘‘comparison

errors’’ [1,18,29–30] that would be associated with low encoding

precision (high noise). When encoding precision is limited, an

observer’s stimulus measurements are noisy and will differ between

displays for each item, even if the item did not change. The

observer then has to decide whether a difference in measurements

is due to noise only or to a change plus noise, which is especially

problematic when changes are small. This signal detection

problem results in comparison errors.

Attempts to avoid such errors by using categorical stimuli run

into two objections: first, using such stimuli does not guarantee

that comparison errors are absent and can be ignored in

modeling; second, there is no good reason to avoid comparison

errors, since the pattern of such errors can help to distinguish

models. Ideally, change detection performance should be

measured across a wide range of change magnitudes, including

small values, as we do here. Comparison errors can, in fact, be

modeled rather easily within the context of a Bayesian-observer

model. Bayesian inference is the decision strategy that maximizes

an observer’s accuracy given noisy measurements [31–32], and

was recently found to describe human decision-making in change

detection well [33].

We conducted two change detection experiments, in the

orientation and color domains, in which we varied both set size

and the magnitude of change. We rigorously tested five models of

working memory limitations, each consisting of an encoding stage

and a decision stage. The encoding stage differed between the five

models: the original item-limit model [2,15–16], two recent

variants [9], and two continuous-resource models, one with equal
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precision for all items [20,23], and one with item-to-item and trial-

to-trial variability in precision [13,33]. The decision stage was

Bayesian for every model. To anticipate our results, we find that

variable precision coupled with Bayesian inference provides a

highly accurate account of human working memory performance

across change magnitudes, set sizes, and feature dimensions, and

far outperforms models that postulate an item limit.

Results

Theory
We model a task in which the observer is presented with two

displays, each containing N oriented stimuli and separated in time

by a delay period. On each trial, there is a 50% probability that

one stimulus changes orientation between the first and the second

display. The change can be of any magnitude. Observers report

whether or not a change occurred. We tested five models of this

task, which differ in the way they conceptualize what memory

resource consists of and how it is distributed across items (Fig. 1a).

Infinite-precision item-limit model. In the infinite-preci-

sion (IP) item-limit model, the oldest item-limit model [2,8,15–16]

and often called the ‘‘limited-capacity’’ or simply the ‘‘item-limit’’

model, memorized items are stored in one of K available ‘‘slots’’. K

is called the capacity. Each slot can hold exactly one item. The

memory of a stored item is perfect (‘‘infinite precision’’). If N#K,

all items from the first display are stored. If N.K, the observer

memorizes K randomly chosen items from the first display. When

a change occurs among the memorized items, the observer

responds ‘‘change’’ with probability 12e. When no change occurs

among the memorized items, the observer responds ‘‘change’’ with

a guessing probability g.

Precision and noise. All models other than the IP model

assume that the observer’s measurement of each stimulus is

corrupted by noise. We model the measurement x of a stimulus h
as being drawn from a Von Mises (circular normal) distribution

centered at h:

p xDhð Þ~ 1

2pI0 kð Þ e
k cos x{hð Þ, ð1Þ

where k is called the concentration parameter and I0 is the modified

Bessel function of the first kind of order 0. (For convenience, we

remap all orientations from [2p/2, p/2) to [2p, p).)

In all models with measurement noise, we identify memory

resource with Fisher information, J(h) [34]. The reasons for this

choice are threefold [13]. First, regardless of the functional form of

the distribution of the internal representation of a stimulus (in our

formalism, of the scalar measurement), Fisher information

determines the best possible performance of any estimator through

the Cramér-Rao bound [34], of which a version on a circular

space exists [35]. Second, when the measurement distribution is

Gaussian, Fisher information is equal to the inverse variance,

J~
1

s2
, which is, up to an irrelevant proportionality constant, the

same relationship one would obtain by regarding resource as a

collection of discrete observations or samples [20,23]. Third, when

neural variability is Poisson-like, Fisher information is proportional

to the gain of the neural population [36–38], and therefore the

choice of Fisher information is consistent with regarding neural

activity as resource [13]. We will routinely refer to Fisher

information as precision. For the circular measurement distribu-

tion in Eq. (1), Fisher information is related to k through J~k I1 kð Þ
I0 kð Þ

[13,33], where I1(k) is the modified Bessel function of the first kind

of order 1.

Slots-plus-averaging model. The SA model [9] is an item-

limit model in which K discrete, indivisible chunks of resource are

allocated to items. When N.K, K randomly chosen items receive a

chunk and are encoded; the remaining N2K items are not

memorized. When N#K, chunks are distributed as evenly as

possible over all items. For example, if K = 4 and N = 3, two items

receive one chunk and one receives two. Resource per item, J, is

proportional to the number of chunks allocated to it, denoted S:

J = SJs, where Js is the Fisher information corresponding to one

chunk.

Slots-plus-resources model. The slots-plus-resources (SR)

model [9] is identical to the SA model, except that resource does

not come in discrete chunks but is a continuous quantity. When

N#K, all items are encoded with precision J = J1/N, where J1 is

the Fisher information for a single item. When N.K, K randomly

chosen items are encoded with precision J = J1/K and the

remaining N2K items are not memorized. Related but less

quantitative ideas have been proposed by Alvarez and Cavanagh

[14] and by Awh and colleagues [7,18].

Equal-precision model. According to the equal-precision

(EP) model [10–11,20,23], precision is a continuous quantity that

is equally divided over all items. Versions of this model have been

tested before on change detection data [8,10,39]. If the total

amount of memory precision were fixed across trials, we would

expect an inverse proportionality between J and set size.

However, there is no strong justification for this assumption, we

allow for a more flexible relationship by using a power-law

function, J = J1Na.

Variable-precision model. In the variable-precision (VP)

model [13], encoding precision is variable across items and trials,

and average encoding precision depends on set size. We model

variability in precision by drawing J from a gamma distribution

with mean �JJ and scale parameter t (Fig. 1b). The gamma

distribution is a flexible, two-parameter family of distributions on

the positive real line. The process by which a measurement x is

generated in the VP model is thus doubly stochastic: x is drawn

randomly from a Von Mises distribution with a given precision,

while precision itself is stochastic. Analogous to J in the EP model,

we model the relationship between �JJ and set size using a power

law function, �JJ~�JJ1Na.

Author Summary

Working memory is a fundamental aspect of human
cognition. It allows us to remember bits of information
over short periods of time and make split-second decisions
about what to do next. Working memory is often tested
using a change detection task: subjects report whether a
change occurred between two subsequent visual images
that both contain multiple objects (items). The more items
are present in the images, the worse they do. The precise
origin of this phenomenon is not agreed on. The classic
theory asserts that working memory consists of a small
number of slots, each of which can store one item; when
there are more items than slots, the extra items are
discarded. A modern model postulates that working
memory is fundamentally limited in the quality rather
than the quantity of memories. In a metaphor: instead of
watering only a few plants in our garden, we water all of
them, but the more plants we have, the less water each
will receive on average. We show that this new model does
much better in accounting for human change detection
responses. This has consequences for the entire field of
working memory research.

No Item Limit in Change Detection
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Bayesian inference. In the models with noise (SA, SR, EP,

VP), the observer decides whether or not a change occurred (denoted

by C = 1 and C = 0) based on the noisy measurements in both displays

(Fig. 1c). We use xi and yi to denote the noisy measurements at the ith

location in the first and second displays, and kx,i and ky,i are their

respective concentration parameters (see Eq. (1)). Due to the noise,

the measurements of any one item will always differ between displays,

even if the underlying stimulus value remains unchanged. Thus, also

on no-change trials, the observer is confronted with two non-identical

sets of measurements, making the inference problem difficult. While

the noise precludes perfect performance, the observer still has a best

possible strategy available, namely Bayesian MAP estimation. This

strategy consists of computing, on each trial, the probability of a

change based on the measurements, p(C = 1|x,y), where x and y are

the vectors of measurements {xi} and {yi}, respectively. The observer

then responds ‘‘change’’ if this probability exceeds 0.5, or in other

words, when

d:
p C~1Dx,yð Þ
p C~0Dx,yð Þw1:

Making use of the statistical structure of the task (Fig. S1), the

posterior ratio d can be evaluated to

d~
pchange

1{pchange

1

N

XN

i~1

I0 kx,ið ÞI0 ky,i

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x,izk2
y,iz2kx,iky,i cos yi{xið Þ

q� �: ð2Þ

(see Text S1 and [40]). Here, pchange is the prior probability that a

change occurred. This decision rule automatically models errors

arising in the comparison operation [1,18,29–30]: the difference

yi2xi is noisy, so that even when a change is absent, it might by

chance be large, and even when a change is present, it might by

chance be small.

In an earlier paper [40], we examined suboptimal alternative

decision rules. A plausible one would be a ‘‘threshold’’ rule,

according to which the observer compares the largest difference

between measurements at the same location in the two displays to

a fixed criterion. If the difference exceeds the criterion, the

observer reports that a change occurred. We proposed this

‘‘maximum-absolute-difference’’ rule in our earlier continuous-

resource treatment of change detection [10], but a comparison

against the optimal rule showed it to be inadequate [40].

Another suboptimal strategy that deserves attention is proba-

bility matching or sampling [41–42]. Under this strategy, the

observer computes the Bayesian posterior p(C = 1|x,y), but instead

of reporting a change (ĈC~1) when this probability exceeds 0.5,

reports a change with probability

p ĈC~1Dx,y
� �

~
p C~1Dx,yð Þk

p C~0Dx,yð Þkzp C~1Dx,yð Þk
: ð3Þ

When k = 0, probability matching amounts to random guessing;

when kR‘, it reduces to MAP estimation. Thus, probability

matching consists of a family of stochastic decision rules

interpolating between MAP estimation and guessing. Probability

Figure 1. Models of change detection. Infinite-precision item limit (IP), slots plus averaging (SA), slots plus resources (SR), equal precision (EP),
and variable precision (VP). The first three are item-limit models, the last two continuous-resource models. (a) Illustration of resource allocation in the
models at set sizes 2 and 5, with a capacity of 3 slots/chunks for IP, SA, and SR. The VP model is distinct from the other models in that the amount of
resource varies on a continuum without a hard upper bound. (b) Probability density functions over encoding precision in the VP model, for four set
sizes. Parameters were taken from the best fit to the data of one human subject. Mean precision, indicated by a dashed line, is inversely proportional
to set size. In the EP model, these distributions would be infinitely sharp (delta functions). (c) Decision process during change detection for each of
the five models.
doi:10.1371/journal.pcbi.1002927.g001

No Item Limit in Change Detection
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matching turns out to be very similar to a modification of MAP

estimation we considered in [40], namely adding zero-mean

Gaussian noise to the logarithm of the decision variable in Eq. (2).

To see this, we rewrite Eq. (3) as

p ĈC~1Dx,y
� �

~
1

1z
p C~0Dx,yð Þ
p C~1Dx,yð Þk

k
~

1

1ze{k log d
,

which is the logistic function with argument log d. On the other

hand, adding zero-mean Gaussian noise g with standard deviation

sg to log d gives

p ĈC~1Dx,y
� �

~Pr log dzgw0ð Þ~W
log d

sg

� �
,

where W is the cumulative of the standard normal distribution. It is

easy to verify that the logistic function and the cumulative normal

distribution are close approximations of each other (with a one-to-

one relation between k and sg), showing that both forms of

suboptimality are very similar. Since an equal-precision model

augmented with Gaussian decision noise far underperformed the

variable-precision model [40], human data are unlikely to be

explained by such decision noise (or equivalently by probability

matching) in the absence of variable precision in the encoding

stage. It is, however, possible that decision noise is present in

addition to variability in encoding precision, but this would not

invalidate our conclusions. Therefore, in the present paper, we will

only examine the optimal Bayesian decision rule.

Free parameters. The IP, SA, SR, and EP models each

have 3 free parameters, and the VP model has 4.

Experiment: orientation change detection
We conducted an orientation change detection task in which we

manipulated both set size and change magnitude (Fig. 2a).

Consistent with earlier studies (e.g. [10,15,17]), we found that

the ability of observers to detect a change decreased with set size,

with hit rate H monotonically decreasing and false-alarm rate F

monotonically increasing (Fig. 2b). Effects of set size were

significant (repeated-measures ANOVA; hit rate: F(3,27) = 52.8,

p,0.001; false alarm rate: F(3,27) = 82.0, p,0.001). The increase

in F is inconsistent with the IP model, as this model would predict

no dependence.

For a more detailed representation of the data, we binned

magnitude of change on change trials into 10 bins (Fig. 2c). All no-

change trials had magnitude 0 and sat in a separate bin. These

psychometric curves clearly show that the probability of reporting

a change increases with change magnitude at every set size

(p,0.001). From Fig. 2c we could, in principle, compute a naı̈ve

estimate of memory capacity using the well-known formula from

the IP model, K = N(H2F)/(12F) [16]. However, since H depends

on the magnitude of change, the estimated K would depend on the

magnitude of change as well, contradicting the basic premise of a

fixed capacity. For example, at set size 6, for change magnitudes

between 0u and 9u, Cowan’s formula would estimate K at exactly

zero (no items retained at all), while for magnitudes between 81u
and 90u, it would estimate K at 3.8, with a nearly linear increase in

between. This serves as a first indication that the IP model in

general and this formula in particular are wrong.

Model fits. We fitted all models using maximum-likelihood

estimation, for each subject separately (see Text S1). Mean and

standard error of all parameters of all models are shown in Table 1.

The values of capacity K in the IP, SA, and SR models were

3.1060.28, 4.3060.47, and 4.3060.42, respectively (mean and

s.e.m.), in line with earlier studies [7–9,15–18]. Using the

maximum-likelihood estimates of the parameters, we obtained

hit rates, false-alarm rates, and psychometric curves for each

model and each subject (Fig. 3).

Hit and false-alarm rates were best described by the VP model,

per root-mean-square error (RMSE) of the subject means (0.040),

followed by the SA and SR models (both 0.046), the equal-

precision (EP) model (0.059), and the IP model (0.070). The same

order was found for the psychometric curves (RMSE: 0.10 for VP,

0.11 for SA, 0.12 for SR, 0.13 for EP, and 0.21 for IP). The IP

model predicts that performance is independent of magnitude of

change and is therefore easy to rule out.

Bayesian model comparison. The RMS errors reported so

far are rather arbitrary descriptive statistics. To compare the

models in a more principled (though less visualizable) fashion, we

performed Bayesian model comparison, also called Bayes factors

[43–44] (see Text S1). This method returns the likelihood of each

model given the data and has three desirable properties: it uses all

data instead of only a subset (like cross-validation would) or

Figure 2. Orientation change detection. (a) Observers reported whether one of the orientations changed between the first and second displays.
(b) Hit and false-alarm rates as a function of set size. (c) Psychometric curves, showing the proportion of ‘‘change’’ reports as a function of the
magnitude of change, for each set size (mean 6 s.e.m across subjects). Magnitude of change was binned into 9u bins. The first point on each curve (at
0u) contains all trials in which no change occurred, and thus represents the false-alarm rate. Using the standard formula for K would return different
estimates for different change magnitudes.
doi:10.1371/journal.pcbi.1002927.g002

No Item Limit in Change Detection
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summary; it does not solely rely on point estimates of the

parameters but integrates over parameter space, thereby account-

ing for the model’s robustness against variations in the parameters;

it automatically incorporates a correction for the number of free

parameters. We found that the log likelihood of the VP model

exceeds that of the IP, SA, SR, and EP models by 97611,

7.263.5, 7.463.7, and 1963, respectively (Fig. 4). This constitutes

strong evidence in favor of the VP model, for example according

to Jeffreys’ scale [45]. Based on our data, we can convincingly rule

out the three item-limit models (IP, SA, and SR) as well as the

equal-precision (EP) model, as descriptions of human change

detection behavior.

Apparent guessing as an epiphenomenon. In the delayed-

estimation paradigm of working memory [10], data consist of

subject’s estimates of a memorized stimulus on a continuous space.

Zhang and Luck [9] analyzed the histograms of estimation errors

in this task by fitting a mixture of a uniform distribution (allegedly

representing guesses) and a Von Mises distribution (allegedly

representing true estimates of the target stimulus). They suggested

that the mixture proportion of the uniform distribution represents

the rate at which subjects guess randomly, and interpreted its

increase with set size as evidence for a fixed limit on the number of

remembered items. However, Van den Berg et al. [13] later

showed that the variable-precision model reproduces the increase

of the mixture proportion of the uniform distribution with set size

well, even though the model does not contain any pure guessing.

They suggested that the guesses reported in the mixture analysis

were merely ‘‘apparent guesses’’.

We perform an analogous analysis for change detection here.

We fitted, at each set size separately, a model in which subjects

guess on a certain proportion of trials, and on other trials,

respond like an EP observer. Free parameters, at each set size

separately, are the guessing parameter, which we call apparent

guessing rate (AGR), and the precision parameter of the EP

observer. We found that AGR was significantly different from

zero at every set size (t(9).4.5, p,0.001) and increased with set

size (Fig. 5; repeated-measures ANOVA, main effect of set size:

F(3,27) = 21.1, p,0.001), reaching as much as 0.6060.06 at set

size 8.

We then examined how well each of our five models can

reproduce the increase of AGR. To do so, we computed AGR

from synthetic data generated using each model, using maximum-

likelihood estimates of the parameters as obtained from the

subjects’ data. We found that the VP model – which does not

Figure 3. Comparing models on summary statistics. (a) Model fits to the hit and false-alarm rates. (b) Model fits to the psychometric curves.
Shaded areas represent 61 s.e.m. in the model. For the IL model, a change of magnitude 0 has a separate proportion reports ‘‘change’’, equal to the
false-alarm rate shown in (a). In each plot, the root mean square error between the means of data and model is given.
doi:10.1371/journal.pcbi.1002927.g003

Table 1. Fitted parameter ranges and estimates.

Experiment 1
estimates Tested range

Model Parameter Mean s.e.m. Min Max

IP K 3.10 0.28 1 8

e 0.220 0.021 0 1

G 0.247 0.016 0 0.5

SA Js 3.94 0.58 1 40

K 4.30 0.47 1 8

pchange 0.584 0.020 0.2 0.8

SR J1 14.2 1.7 1 60

K 4.30 0.42 1 8

pchange 0.574 0.019 0.2 0.8

EP J1 20.3 3.6 1 60

a 21.28 0.11 22 0

pchange 0.492 0.007 0.2 0.8

VP �JJ1 53.1 6.1 5 300

t 31.2 8.9 5 300

a 20.88 0.08 22 0

pchange 0.532 0.005 0.2 0.8

Mean and standard error of the maximum-likelihood estimates and tested
ranges of model parameters for Experiment 1 (orientation change detection).
doi:10.1371/journal.pcbi.1002927.t001

No Item Limit in Change Detection
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contain any actual guessing – reproduces the apparent guessing

rate better than the other models (Fig. 5; RMSE = 0.20 for VP).

This means that the apparent presence of guessing does not imply

that visual working memory is item-limited.

How the VP model can reproduce apparent guessing can be

understood as follows. In the VP model, the distribution of

precision is typically broad and includes a lot of small values,

especially at larger set sizes (Fig. 1b). The EP model augmented

with set size-dependent guessing would approximate this broad

distribution by one consisting of two spikes of probability, one at a

nonzero, fixed precision and one at zero precision. To mimic the

VP precision distribution, the weight of the spike at zero must

increase with set size, leading to an increase of AGR with set size.

In sum, variability in precision produces apparent guessing as an

epiphenomenon, a finding that is consistent with our results in the

delayed-estimation task [13].

Generalization. To assess the generality of our results, we

repeated the orientation change detection experiment with color

stimuli and found consistent results (see Figs. S2, S3, S4, S5 and

Text S1). Specifically, in Bayesian model comparison, the VP

model outperforms all other models by log likelihood differences of

at least 48.468.2, which constitutes further evidence against an

item limit.

Discussion

Implications for working memory
Five models of visual working memory limitations have been

proposed in the literature. Here, we tested all five using a change

detection paradigm. Although change detection has been inves-

tigated extensively, several of the models had never been applied

to this task and no previous study had compared all models.

Compared to previous studies, our use of a continuous stimulus

variable and changes drawn from a wide range of magnitudes

enhanced our ability to tell apart the model predictions. Our

results suggest that working memory resource is continuous and

variable and do not support the notion of an item limit.

The variable-precision model of change detection connects a

continuous-resource encoding model of working memory [13]

with a Bayesian model for decision-making in change detection

[33]. This improves on two related change detection studies that

advocated for continuous resources. Wilken and Ma [10]

introduced the concept of continuous resources, but only

compared an EP model with a suboptimal decision rule to the

IP model. Although the EP model won in this comparison, the

more recent item-limit models (SA and SR) had not yet been

proposed at that time. Our present results show that the SA and

SR models are improvements over both the EP and IP models, but

lose to the VP model. In a more recent study, we compared

different variants of the Bayesian model of the decision process

and found that the optimal decision rule outperformed suboptimal

ones [33], but we did not vary set size or compare different models

of working memory. Other tasks, such as change localization [13],

visual search [21,23], and multiple-object tracking [19,46], can

also be conceptualized using a resource-limited front end

conjoined with a Bayesian-observer back end. Whether such a

conceptualization will survive a deeper understanding of resource

limitations remains to be seen.

It is instructive to consider each model in terms of the distribution

over precision that it postulates for a given set size. In the IP model,

this distribution has mass at infinity and, depending on set size, also

at zero. In the SA and SR models, probability mass resides,

depending on set size, at one or two nonzero values, or at zero and

one nonzero value. The EP model has probability mass only at one

nonzero value. The VP model is the only model considered that

assigns probability to a broad, continuous range of precision values.

Roughly speaking, the more values of precision a model allows, the

better it seems to fit. Although we assumed in the VP model that

precision follows a gamma distribution, it is possible that a different

continuous distribution can describe variability in precision better.

However, the amount of data needed to distinguish different

Figure 4. Bayesian model comparison. Model log likelihood of
each model minus that of the VP model (mean 6 s.e.m.). A value of 2x
means that the data are ex times more probable under the VP model.
doi:10.1371/journal.pcbi.1002927.g004

Figure 5. Apparent guessing analysis. Apparent guessing rate as a function of set size as obtained from subject data (circles and error bars) and
synthetic data generated by each model (shaded areas). Even though the VP model does not contain any ‘‘true’’ guesses, it still accounts best for the
apparent guessing rate.
doi:10.1371/journal.pcbi.1002927.g005
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continuous precision distributions using psychophysics only might

be prohibitive.

Work by Rouder et al. used a change detection task to compare

a continuous-resource model based on signal detection theory to a

variant of the IP model [8]. Manipulating bias, they measured

receiver-operating characteristics (ROCs). The IP variant predict-

ed straight-line ROCs, whereas the continuous-resource model

predicted regular ROCs (i.e., passing through the origin).

Unfortunately, each of the ROCs they measured contained only

three points, and therefore the models were very difficult to

distinguish. We ourselves, in an earlier study, had collected five-

point ROCs using confidence ratings, allowing for an easier

distinction between different ROC types; there, we found that the

ROCs were regular [10], in support of a continuous-resource

model. A difference between the Rouder study and our current

study is that Rouder et al. used ten distinct colors instead of a one-

dimensional continuum; this again has the disadvantage of missing

the stimulus regime in which the signal-to-noise ratio is low.

Moreover, the decision process in their continuous-resource model

was not optimal; an optimal observer would utilize knowledge of

the distribution of the stimuli and change magnitudes used in the

experiment. It is likely that the optimal decision rule would have

described human behavior in Rouder et al.’s experiment better

than an ad-hoc suboptimal rule [33]. Finally, Rouder et al. did not

consider variability in precision. In short, our current study does

not contradict the results of Rouder et al., but offers a more

plausible continuous-resource model and tests all models over a

broader range of experimental conditions.

The notion of an item limit on the one hand and continuous or

variable resources on the other hand are not mutually exclusive. In

the SR model, for example, a continuous resource is split among a

limited number of items. Although this model was not the best in

the present study, many other ‘‘hybrid’’ models can be conceived –

such as a VP model augmented with an item limit, or an IP or SA

model with variable capacity [47–48] – and testing them is an

important direction for future work. Our results, however,

establish the VP model as the standard against which any new

model of change detection should be compared.

Neural implications
The neural basis of working memory limitations is unknown. In

the variable-precision model, encoding precision is the central

concept, raising the question which neural quantity corresponds to

encoding precision. We hypothesize that precision relates to neural

gain, according to the reasoning laid out in previous work

[13,19,33]. To summarize, gain translates directly to precision in

sensory population codes [49], increased gain correlates with

increased attention [50], and high gain is energetically costly [51],

potentially bringing encoding precision down as set size increases.

The variable-precision model predicts that the gain associated with

the encoding of each item exhibits large fluctuations across items

and trials. There is initial neurophysiological support for this

prediction [52–53]. Furthermore, if gain is variable, then spiking

activity originates from a doubly stochastic process: spiking is

stochastic for a given of value of gain, while gain is stochastic itself.

Recent evidence points in this direction [54–55], although formal

model comparison remains to be done. The variable-precision

model also predicts that gain on average decreases with increasing

set size. We proposed in earlier work that this could be realized

mechanistically by divisive normalization [19]. Divisive normal-

ization could act on the gains of the input populations by

approximately dividing each gain by the sum of the gains across all

locations raised to some power [56]. When set size is larger, the

division would be by a larger number, resulting in a

post-normalization gain that decreases with set size. A spiking

neural network implementation of aspects of continuous-resource

models was proposed recently [57]. Taken together, the variable-

precision model has plausible neural underpinnings.

Our results have far-reaching implications for neural studies of

working memory limitations. Throughout the field, taking a fixed

item limit for granted has been the norm, and many studies have

focused on finding its neural correlates [12,58]. Even if we restrict

ourselves to change detection only, a fixed item limit has been

assumed by studies that used fMRI [59–65], EEG [66–72], MEG

[67,72–73], voxel-based morphometry [74], TMS [68,75], lesion

patients [76], and computational models [77–78]. Our present

results undermine the theoretical basis of all these studies. Neural

studies that questioned the item-limit model or attempted to

correlate neural measures with parameters in a continuous-

resource model have been rare [27,57]. Perhaps, this is because

no continuous-resource model has so far been perceived as

compelling. The variable-precision model remedies this situation

and might inspire a new generation of neural studies.

Materials and Methods

Stimuli
Stimuli were displayed on a 210 LCD monitor at a viewing

distance of approximately 60 cm. Stimuli were oriented ellipses

with minor and major axes of 0.41 and 0.94 degrees of visual angle

(deg), respectively. On each trial, ellipse centers were chosen by

placing one at a random location on an imaginary circle of radius

7 deg around the screen center, placing the next one 45u
counterclockwise from the first along the circle, etc., until all

ellipses had been placed. Set size was 2, 4, 6, or 8. Each ellipse

position was jittered by a random amount between 20.3 and 0.3

deg in both x- and y-directions to reduce the probability of

orientation alignments between items. Stimulus and background

luminances were 95.7 and 33.1 cd/m2, respectively.

Participants
Ten observers participated (4 female, 6 male; 3 authors). All

were between 20 and 35 years old, had normal or corrected-to-

normal vision, and gave informed consent.

Procedure
On each trial, the first stimulus display was presented for

117 ms, followed by a delay period (1000 ms) and a second

stimulus display (117 ms). In the first display, set size was chosen

randomly and the orientation of each item was drawn indepen-

dently from a uniform distribution over all possible orientations.

The second display was identical to the first, except that there was

a 50% chance that one of the ellipses had changed its orientation

by an angle drawn from a uniform distribution over all possible

orientations. The ellipse centers in the second screen were jittered

independently from those in the first. Following the second display,

the observer pressed a key to indicate whether there was a change

between the first and second displays. A correct response caused

the fixation cross to turn green and an incorrect response caused it

to turn red. During the instruction phase, observers were informed

in lay terms about the distributions from which the stimuli were

drawn (e.g., ‘‘The change is equally likely to be of any

magnitude.’’). Each observer completed three sessions of 600

trials each, with each session on a separate day, for a total of 1800

trials. There were timed breaks after every 100 trials. During each

break, the screen displayed the observer’s cumulative percentage

correct.
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Model fitting and model comparison
Methods for model fitting and model comparison are described

in the Text S1.

Supporting Information

Figure S1 Generative model. The generative model shows

the relevant variables in the change detection task and the

statistical dependencies between them. C: change occurrence (0 or

1); D: magnitude of change; D: vector of change magnitudes at all

locations; h and Q: vectors of stimuli in the first and second

displays, respectively; x and y: vectors of measurements in the first

and second displays, respectively.

(TIF)

Figure S2 Color change detection. Observers reported

whether one of the colors changed between the first and second

displays.

(TIF)

Figure S3 Color change detection: summary statistics
and model fits. (a) Model fits to the hit and false-alarm rates. (b)

Model fits to the psychometric curves. Shaded areas represent 61

s.e.m. in the model. For the IL model, a change of magnitude 0

has a separate proportion reports ‘‘change’’, equal to the false-

alarm rate shown in (a). In each plot, the root mean square error

between the means of data and model is given.

(TIF)

Figure S4 Color change detection: Bayesian model
comparison. Model log likelihood of each model minus that of

the VP model (mean 6 s.e.m.). A value of 2x means that the data

are ex times more probable under the VP model.

(TIF)

Figure S5 Color change detection: apparent guessing
analysis. Apparent guessing rate as a function of set size as

obtained from subject data (circles and error bars) and synthetic

data generated by each model (shaded areas). Even though the VP

model does not contain any ‘‘true’’ guesses, it still accounts best for

the apparent guessing rate.

(TIF)

Table S1 Mean and standard error of the maximum-
likelihood estimates and tested ranges of model param-
eters for Experiment 2 (color change detection).
(DOCX)

Text S1 Supporting text. Detailed derivation of Bayesian

decision rule and explanation of model fitting and comparison

methods. Explanation of color change detection experiment and

results.

(DOCX)
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SUPPORTING TEXT 
 
1. The Bayesian decision process in change detection 
The first step in Bayesian modeling of a perceptual task is to specify the statistical structure of 
the task, also called the generative model (Fig. S1). We denote change occurrence by C, a binary 
variable taking values 0 and 1 (0: no change; 1: change). The N stimuli in the first display, 

denoted by a vector =(1,…,N), take values on the circle. They are drawn independently from a 

uniform distribution over the stimulus space, so that p()=1/(2)N. We denote by boldface Δ  the 
vector of change magnitudes at all locations. It is a vector of zeros except at the location where 
the change, if any, is located. All locations are equally likely to contain the change. The 
magnitude of change, denoted by non-boldface Δ, is drawn from a uniform distribution, 

p()=1/(2). The N stimuli in the second display, denoted by =(1,…,N), are equal to the sum 

of the initial stimulus vector  and the change vector Δ :  φ θ Δ . Finally, the measurements in 

the first and second displays, x=(x1,…,xN) and y=(y1,…,yN), respectively, are drawn from 

independent Von Mises distributions with corresponding concentration parameters x=(x,1,…, 

x,N) and y=(y,1,…, y,N): 
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This allows for the possibility that the concentration parameter of the noise at a given location is 
different between the first and the second displays. In the variable-precision model, this will in 
general be the case, since these values are modeled as being drawn independently. 

Now we are ready to work out the observer’s inference process. Bayesian inference 
amounts to computing the probability of C given the noisy measurements in the first and second 
displays on a given trial, x and y. The Bayesian decision variable d is the ratio between the 
probability that a change occurred and the probability that no change occurred, given x and y: 
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where p(C) is the prior probability of change occurrence. d is called the posterior ratio of change 
occurrence and reflects the observer’s belief about the occurrence of a change on one trial. To 
compute d, we need p(x,y|C), the distribution of the measurements in either the no-change or the 
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change conditions. This distribution is obtained by marginalizing the joint distribution of all 

variables over  (scalar), Δ  (vector), , and . The result is 
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The sum over i runs over the N possible locations of the change. In Eq. (2), p(xi|i) and p(yi|i) 
are interpreted as likelihood functions over the stimulus – single-trial quantities that reflect the 

observer’s belief about the stimulus (i or i) based on the measurement on that trial (xi or yi). 
The width of the stimulus likelihood function reflects the observer’s uncertainty about the 
stimulus.  

Twice substituting Eq. (2) in Eq. (1) and simplifying, we find 
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where pchange is the observer’s prior belief that a change occurred. Finally, substituting the Von 
Mises noise distributions and evaluating the integrals yields [1] 
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The observer responds “change” (Ĉ=1) when d>1 and “no change” (Ĉ=0) when d<1. This is 
called maximum-a-posteriori estimation and it is the strategy that maximizes accuracy if pchange 
equals the true frequency of change trials, i.e. 0.5 in our experiments. 

This model of change detection automatically encompasses both the integration of 
information across items and the comparison between displays. The former is reflected by the 
sum in Eq. (3), the latter by the difference between the measurements in the first and second 

displays, yixi. Since this difference is subject to noise, errors will be made. Thus, the notion of 
“comparison errors” in change detection [2] is incorporated automatically and in a principled 
manner in the the Bayesian model [1]. In previous work, we proposed the decision rule maxi 

|yixi|>k, where |  | denotes circular distance and k is an unknown criterion [3], but because this 
rule is not equivalent to Eq. (3), it is not optimal. Another important feature of Eq. (3) is that the 

local concentration parameters in both displays, x,i and y,i, play a role. This is analogous to 
trial-to-trial weighting by reliability in cue integration [4,5]: evidence from less noisy 
measurements is weighted more heavily.  
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2. Model fitting and model comparison 
Model predictions. In the IL model, simple expressions exist for the probability of reporting 

“change”: p(Ĉ=1|C=1)=K/N(1)+(1K/N)g when N>K, p(Ĉ=1|C=1)=1 when NK, and 
p(Ĉ=1|C=0)=g. In the other models, the probability of reporting “change” is equal to the 

probability that d>1. This probability depends on set size N, change magnitude , and the model 
parameters. Because no analytical expression exists for this probability in any of the models, we 
estimated it for each model using Monte Carlo simulation: for each experimental trial and 
parameter combination, we drew 10,000 samples of (x,y) pairs from the generative model. For 
each sample, the model’s decision rule was applied, and the proportion of “change” responses 
among all samples was determined. This returned the model’s probability of reporting “change” 
on each trial for the given parameter values. 

Parameter fitting. For a given model m, we denote the vector of model parameters by t. 
The likelihood of a specific combination of parameter values is the probability of the observer’s 

empirical responses given that parameter combination:      
trials
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m k k k
k

L p p C N


  t t t , 

where Ntrials is the total number of trials, and Nk, k, and Ĉk, denote set size, change magnitude, 
and the subject’s response on the kth trial, respectively. The maximum-likelihood estimate of the 
parameters is the value of t that maximizes Lm(t).  

Bayesian model comparison. Bayesian model comparison is a method to compare models 
that automatically penalizes models with more free parameters [6,7]. Each model m produces a 

prediction for probability of a response Ĉk on each trial, p(Ĉk|Nk, k,t). Bayesian model 
comparison consists of calculating, for each model, the joint probability of a subject’s empirical 
responses, averaged over free parameters. This gives the model likelihood, denoted L(m): 
 

            
trials

1

ˆdata | data | , | | , , |
N

k k k
k

L m p m p m p m d p C N p m d


 
    

 
 t t t t t t . 

 
We chose the prior over the jth parameter to be uniformly distributed on an interval of size Rj. 
The intervals are given in Tables 1 and S1. After rewriting for numerical convenience, we arrive 

at        max

dim
log log

max
1

log log log ,mL L m
j

j

L m L m R e d



   
t

t t where dim t is the number of 

parameters and    max max m
t

L m L t . We computed the integrals over parameters numerically 

by using the trapezoidal rule. 
 
3. Supplementary results: color change detection 
To examine the generality of our conclusions, we repeated the orientation change detection 
experiment described in the main text with color stimuli (Fig. S2). This experiment was identical 
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except for the following differences. Stimuli were colored discs with a radius of 0.36 deg. The 
colors were drawn independently from 180 color values uniformly distributed along a circle of 
radius 60 in CIE 1976 (L*, a*, b*) color space. This circle had constant luminance (L*=58) and 
was centered at the point (a*=12, b*=13). Stimulus positions were not jittered. On each trial, set 
size was 1, 2, 4, or 8, with equal probabilities. Seven subjects participated (4 female, 3 male; 1 
author). 

The results are qualitatively consistent with those of the main experiment. We found a 
significant effect of set size on hit rate (F(3,18)=40.4, p<0.001) and false-alarm rate 
(F(3,18)=26.2, p<0.001) (Fig. S3a). The probability of reporting a change increased with change 
magnitude at every set size (Fig. S3b). The VP model best fitted the hit and false-alarm rates 
(RMSE of 0.046 versus 0.059 and higher) as well as the psychometric curves (0.11 versus 0.14 
and higher). The VP model also won in Bayesian model comparison (Fig. S4), surpassing the SA 

model by 48.4  8.2 points. As for orientation, we found apparent guessing rates that increased 
with set size (F(3,18)=31.8, p<0.001) and were non-zero for all set sizes (t(6)>5.45, p<0.001) 
(Fig. S5). The VP model was better able to account for this than the next best model (the SA 
model), with RMSE values of 0.09 and 0.17, respectively. Parameter estimates are given in 
Table S1. 
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SUPPORTING TABLE 
 

 
 

 

 

 

 

 

 

 

 

 

Table S1. Mean and standard error of the maximum-likelihood estimates and tested ranges of 
model parameters for Experiment 2 (color change detection).  

 
SUPPORTING FIGURES 
 

 
Fig. S1. The generative model shows the relevant variables in the change detection task and the 

statistical dependencies between them. C: change occurrence (0 or 1); : magnitude of change; 

: vector of change magnitudes at all locations;  and : vectors of stimuli in the first and second 
displays, respectively; x and y: vectors of measurements in the first and second displays, 
respectively.  

C 

Δ

x y

φθ

 Experiment 2 estimates Tested range 
Model Parameter Mean S.e.m. Min Max 
IL K 4.57 0.43 1 8 

 0.229 0.009 0 1 
G 0.172 0.005 0 0.5 

SA J1 3.97 0.72 1 40 
K 4.14 0.59 1 8 
pchange 0.591 0.016 0.2 0.8 

SR J1 13.8 2.0 1 60 
K 4.14 0.46 1 8 
pchange 0.574 0.019 0.2 0.8 

EP J1 13.6 4.1 1 60 
α -0.914 0.195 -2 0 
pchange 0.506 0.008 0.2 0.8 

VP 
1J  111 14.0 5 300 

 163 35 5 300 
α -0.471 0.042 -2 0 
pchange 0.557 0.005 0.2 0.8 
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Fig. S2. Color change detection. Observers reported whether one of the colors changed between 
the first and second displays. 
 

 
 
Fig. S3. Color change detection: summary statistics and model fits. (a) Model fits to the hit 

and false-alarm rates. (b) Model fits to the psychometric curves. Shaded areas represent  1 
s.e.m. in the model. For the IL model, a change of magnitude 0 has a separate proportion reports 
“change”, equal to the false-alarm rate shown in (a). In each plot, the root mean square error 
between the means of data and model is given.  
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Fig. S4. Color change detection: Bayesian model comparison. Model log likelihood of each 

model minus that of the VP model (mean  s.e.m.). A value of x means that the data are ex 
times more probable under the VP model.  
 

 
 
Fig. S5. Color change detection: apparent guessing analysis. Apparent guessing rate as a 
function of set size as obtained from subject data (circles and error bars) and synthetic data 
generated by each model (shaded areas). Even though the VP model does not contain any “true” 
guesses, it still accounts best for the apparent guessing rate. 
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